This proposal is representative of the projects currently on offer in our group. For more details of active research projects, please visit the Research section of our webpage at: http://www.chem.leeds.ac.uk/People/Foster.html

Optimisation of small molecule inhibitors of TRP ion channels as potentiators of disease states of unmet medical need

This project seeks to identify and develop small molecule inhibitors of TRP ion function as chemical probes or as potential therapeutics for treatment of a range of cardiovascular disorders.

The family of TRPC channels are newly-discovered calcium channel that crucially maintains calcium in the cell. Recent prominent studies suggest their importance in causation or aggravation of atherosclerosis and rheumatoid arthritis, as well as a range of other cardiovascular diseases. Few potent and/or selective inhibitors of TRPC have previously been reported.

Plan of investigation:
(a) Optimisation of TRPC inhibitors: We have recently identified a novel series of inhibitors of TRPC following a high-throughput screen (HTS). The compounds are moderately potent and selective for a panel of homologous TRP ion channels and the cardiotox channel, hERG. A key focus of this project will be to optimise the inhibitors for TRPC potency (generate nM potency hits), selectivity and physiochemical properties consistent with the properties of an orally bioavailable therapeutic. This will be achieved by strategic modification of the compounds by consideration of SAR and rationalisation of a pharmacophore model for TRPC modulation, as well as optimisation of physicochemical properties directed by computational prediction and in vitro assay. All synthesised compounds will be tested for TRPC activity using appropriate cellular in vitro assays and for selectivity using a panel of TRPC assays, as well as other ion channels of relevance to the project. The aim of the project will be to generate a compound with appropriate potency, selectivity and pharmacokinetic properties to be progressed to in vivo determination of TRPC function.

(b) TRPCa: In parallel we will optimise hits for TRPCa from an on-going HTS. Hits will be optimised for TRPCa potency and selectivity using an analogous procedure as for the TRPC project above. The overall aim will be to generate a selective set of compounds for both TRPC and TRPCa modulation in order to appropriately and comparatively probe the biology of these critically important ion channels.

(c) Binding site id: In collaboration with others in the School of Chemistry we will also aim to identify the binding site of the inhibitors at the TRPC channel by using a chemoproteomic strategy incorporating affinity and activity based probes.

The project would suit a student with general interests at the interface between chemistry and biology and with more specific interests in medicinal chemistry and chemical biology.

Structure of hits and demonstration of potent effects of inhibitors

References